Team Bibliography

Publications

  1. W. Shao and W. McCollough, “Multiple-GPU-based frequency-dependent finite-difference time domain formulation using matlab parallel computing toolbox,” Progress In Electromagnetics Research M, vol. 60, pp. 93-100, 2017. 
  2. T. McCollough and W. Shao, “Microwave Detection of an Osteophyte in a Knee,” 6th International Workshop on Computational Human Phantoms, Annapolis, MD, August 2017.
  3. W. Shao, A. Edalati, T. McCollough, and W. McCollough, “Experimental Microwave Near-field Detection with Moveable Antennas” IEEE AP-S Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, San Diego, CA, July 2017.
  4. A. Edalati and W. McCollough, “A Novel Dual-Band Beam-Switching Antenna Based on Active Frequency Selective Surfaces,” IEEE AP-S Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, San Diego, CA, July 2017.
  5. A. Edalati, W. Shao, T. McCollough, and W. McCollough, “A Novel Cavity Backed Monopole Antenna with UWB Unidirectional Radiation,” Progress in Electromagnetic Research C, vol. 72, pp.1-13, 2017.
  6. W. Shao, A. Edalati, T. McCollough, and W. McCollough, “A phase confocal method for microwave near-field imaging,” IEEE Trans. Microw. Theory Techn., vol. 65, no. 7, pp. 2508-2515, July, 2017.
  7. A. Edalati and K. Sarabandi, “Wideband, Wide Angle, Polarization Independent RCS Reduction Using Nonabsorptive Miniaturized-Element Frequency Selective Surfaces,” IEEE Transactions on Antennas and Propagation, vol. 62, no. 2, pp. 747-754, 2014.  
  8. A. Edalati and K. Sarabandi, “Reflectarray antenna based on miniaturized-element frequency selective surfaces,” IET Microwaves, Antennas & Propogation, vol. 8, no. 12, pp. 973-979, 2014.
  9. A. Edalati and T. A. Denidni, “Frequency Selective Surfaces for Beam-Switching
    Applications,” IEEE Transactions on Antennas and Propagation, vol. 61, no. 1, pp. 195-200, 2013.
  10. W. Shao and R. S. Adams, “Two antipodal Vivaldi antennas and an antenna array for microwave early breast cancer detection,” Microw Opt Tech Lett., vol. 55, no. 3, pp 670-674, March 2013.
  11. W. Shao and R. S. Adams, “Multi-polarized microwave power imaging (MPI) algorithm for early breast cancer detection,” Progress in electromagnetics research M, vol. 23, pp. 93-107, 2012.
  12. W. Shao and J. Yao, ” An improved simulation system for breast cancer detection via microwave method,” in Chinese, Journal of System Simulations, vol. 24, no. 8, 2012.
  13. A. Edalati and K. Sarabandi, “MEFSS for radar cross section reduction,” IEEE AP-S, July, 2012.
  14. A. Edalati and K. Sarabandi, “Wideband reflectarray antenna based on miniaturized element frequency selective surfaces,” EuCAP European Conference on Antennas and Propagation, March, 2012.
  15. A. Edalati and K. Sarabandi, “A novel reflectarray antenna based on grounded loop-wire miniaturized element,” USNC-URSI National Radio Science Meeting, Jan. 2012.
  16. A. Edalati and T. A. Denidni, “High gain reconfigurable sectoral antenna using active FSS structures for base station applications”, IEEE Transactions on Antennas and Propagation, vol. 59, no. 7, pp. 2464-2472, 2011.
  17. W. Shao and R.S. Adams, “UWB microwave imaging for early breast cancer detection: a novel confocal imaging algorithm,” IEEE AP-S International Symposium, pp. 707-709, 2011.
  18. A. Edalati and T. A. Denidni, “Beam-Switching antenna based on active FSS surfaces,” IEEE AP-S, July, 2011.
  19. A. Edalati and T. A. Denidni, “A compact UWB antenna with dual notched characteristics,” Microwave and Optical Technology Letters, vol. 52, no. 5, pp. 1183-1186, 2010.
  20. W. Shao and R. S. Adams, “UWB imaging with multi-polarized signals for early breast cancer detection,” IEEE AP-S International Symposium 2010, pp. 1-4, 2010.
  21. A. Edalati and T. A. Denidni, “Experimental investigation of a new reconfigurable sectoral antenna,” IEEE AP-S, July, 2010.
  22. A. Edalati and T. A. Denidni, “Reconfigurable beamwidth antenna based on active partially reflective surfaces,” IEEE Antenna and Propagation Letters, vol. 8, pp. 1087-1090, 2009.
  23. W. Shao, B. Zhou, and G. Wang, “Effect on imaging result due to the time delay imprecision in confocal algorithm,” in Chinese, Journal of Microwaves, vol. 25, no.1 2009.
  24. A. Edalati and T. A. Denidni, “Reconfigurable antenna with high directive beam using active PRS”, IEEE AP-S, June, 2009.
  25. A. Edalati, T. A. Denidni, and H. Boutayeb, “Reduction of active elements in agile EBG antennas using their second BandGap,” IEEE AP-S, July, 2008.
  26. A. Edalati, H. Boutayeb, and T. A. Denidni, “Band structure analysis of active metallic crystals: effect of active elements,” Electromagnetic Waves and Application, vol. 21, no. 15, pp. 2421-2430, 2007.
  27. W. Shao, B. Zhou, and G. Wang, “UWB imaging system for early breast cancer detection in inhomogeneous breast tissues,” in Chinese, Journal of System Simulations, vol. 19, no. 10, 2007.
  28. A. Edalati, T. A. Denidni, and H. Boutayeb, “Analysis of different defect configurations in CEBG structures for directive patterns,” IEEE AP-S, June, 2007.
  29. A. Edalati and T. A. Denidni, “A new configurable beamwidth antenna using cylindrical EBG,” IEEE AP-S, June, 2007.
  30. A. Edalati and T. A. Denidni, “Agile antennas with variable beamwidth using cylindrical electromagnetic BandGap structures,” USNC-URSI National Radio Science Meeting, URSI, June, 2007.
  31. W. Shao, B. Zhou, and G. Wang, “UWB microwave imaging simulation for breast cancer detection based on three-dimensional finite-difference time domain,” in Chinese, Journal of system simulations, vol. 18, no. 6, 2006.
  32. W. Shao, Z. Zheng, B. Zhou, and Gang Wang, “UWB microwave imaging for breast tumor detection in inhomogeneous tissue,” IEEE-EMBS 2005, vol.7, pp: 1496 – 1499, 2005.
  33. W. Shao, B. Zhou and G. Wang, “Early breast tumor imaging via UWB microwave method: study on multi-target detection,” IEEE AP-S International Symposium 2005, vol. 3A, pp. 835 – 838, 2005. 
  34. W. Shao, B. Zhou, and G. Wang, “UWB microwave imaging for early detection of breast cancer,” in Chinese, Journal of Microwaves, vol. 21, no. 3, 2005.
  35. B. Zhou, W. Shao, and G. Wang, “On the resolution of UWB microwave imaging of tumors in random breast tissue,” IEEE AP-S International Symposium, vol. 3A, pp. 831-834, 2005.
  36. B. Zhou, W. Shao, and G. Wang, “The application of multi-look in UWB microwave imaging for early breast cancer detection using hemispherical breast model,” Proc. IEEE-EMBS 2005, vol.7, pp. 1552-1555, 2005.
  37. B. Zhao, W. Shao, and G. Wang, “UWB microwave imaging for early breast cancer detection: effect of two synthetic antenna array configurations,” Proc. IEEE-SMC 2004, vol. 5, pp. 4468-4473, 2004.
  38. B. Zhou, W. Shao, and G. Wang, “UWB microwave imaging for early breast cancer detection: effect of coupling medium on resolution,” Proc. IEEE AP-RASC 2004, pp. 431-434, Aug. 2004.
  39. W. Shao, J. Xie, and G. Wang, “Structure and implementation of smart antennas based on software radio,” IEEE-SMC 2003, vol. 2, pp. 1938-1943, 2003.

Patents

  1. T. R. McCollough and W. J. McCollough, “Dielectric encoding of medical images,” U.S. Patent 9,704,275, July 11, 2017.
  2. W. Shao and R. S. Adams, “Antipodal vivaldi antenna array for biomedical imaging,” U.S. Patent 9,504,404, Nov. 29, 2016.
  3. A. Edalati and T.A. Denidni, “Beam-switching antenna based on frequency selective surfaces,” U.S. Patent 9,450,304, Sept. 20, 2016.
  4. W. J. McCollough and T. R. McCollough, “Distributed microwave processing system and method,” U.S. Patent 9,386,936, July 12, 2016.
  5. T. R. McCollough and W. J. McCollough, “Dielectric encoding of medical images,” U.S. Patent 9,111,334, Aug. 18, 2015.

Reference Resources